$$\hat{\lambda}^{(t)}_r = \frac{1}{r}\sum^{n-t}_{i=t+1} \left[ \frac{\sum\limits^{r-1}_{k=0}{ (-1)^k {r-1 \choose k} {i-1 \choose r+t-1-k} {n-i \choose t+k} }}{{n \choose r+2t}} \right] x_{i:n} \mbox{,}$$
where $t$ represents the trimming level of the $t$-largest or $t$-smallest values, $r$ represents the order of the L-moments, $n$ represents the sample size, and $x_{i:n}$ represents the $i$th sample order statistic ($x_{1:n} \le x_{2:n} \le \dots \le x_{n:n}$).
TLmom(x,order,trim=NULL,leftrim=NULL,rightrim=NULL,sortdata)
NULL
in the argument list, the default is 0---the usual L-moment is returned.list
is returned.order
and trimming=trim
.NULL
if asymmetrical trimming was used.TLmoms
X1 <- rcauchy(30)
TL <- TLmom(X1,order=2,trim=1)
Run the code above in your browser using DataLab