parglo
. The cumulative
distribution function of the distribution is$$F(x) = 1/(1+e^{-y}) \mbox{,}$$ where $y$ is
$$y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x-\xi)}{\alpha}\right) \mbox{ for } \kappa \ne 0 \mbox{,and }$$
$$y = (x-\xi)/\alpha \mbox{ for } \kappa = 0 \mbox{, and}$$ where $F(x)$ is the nonexceedance probability for quantile $x$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\kappa$ is a shape parameter.
cdfglo(x, para)
parglo
or similar.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
quaglo
, parglo
lmr <- lmom.ub(c(123,34,4,654,37,78))
cdfglo(50,parglo(lmr))
Run the code above in your browser using DataLab