pargpa
. The cumulative distribution function of the distribution is$$F(x) = 1 - e^{-y} \mbox{,}$$ where $y$ is
$$y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x-\xi)}{\alpha}\right) \mbox{ for } \kappa \ne 0 \mbox{, and}$$
$$y = (x-\xi)/A \mbox{ for } \kappa = 0 \mbox{,}$$ where $F(x)$ is the nonexceedance probability for quantile $x$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\kappa$ is a shape parameter.
cdfgpa(x, para)
pargpa
or similar.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
quagpa
, pargpa
lmr <- lmom.ub(c(123,34,4,654,37,78))
cdfgpa(50,pargpa(lmr))
Run the code above in your browser using DataLab