pargpa
.
The L-moments in terms of the parameters are$$\lambda_1 = \xi + \frac{\alpha}{\kappa+1} \mbox{,}$$ $$\lambda_2 = \frac{\alpha}{(\kappa+2)(\kappa+1)} \mbox{,}$$ $$\tau_3 = \frac{(1-\kappa)}{(\kappa+3)} \mbox{, and}$$ $$\tau_4 = \frac{(1-\kappa)(2-\kappa)}{(\kappa+4)(\kappa+3)} \mbox{.}$$
lmomgpa(para)
list
is returned.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
pargpa
, quagpa
, cdfgpa
lmr <- lmom.ub(c(123,34,4,654,37,78))
lmr
lmomgpa(pargpa(lmr))
Run the code above in your browser using DataLab