parcau(lmom)
TLmoms
with trim=1
.list
is returned.cau
.lmom.ub
).
Contrast this practice with pargum
for example.) The reason this is so is because the usual L-moments are
undefined for the Cauchy distribution, but the trimmed L-moments with
a symmetrical trimming parameter are defined. Specifically, the L-moments by
trimming the smallest and largest order statistic expections of the Cauchy are
defined by Elamir and Seheult (2003). The function parcau
calls
TLlmoms(x,trim=1)
) internally to compute the trimmed L-moments.
The relation between the parameters and the trimmed L-moments is$$\xi = \lambda^{(1)}_1 \mbox{and}$$
$$\alpha = \frac{\lambda^{(1)}_2}{0.698} \mbox{.}$$
Gilchrist, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.
TLmoms
, lmomcau
X1 <- rcauchy(20)
parcau(TLmoms(X1,trim=1))
Run the code above in your browser using DataLab