x
) are returned in ascending order. The plotting-position formula is$$pp_i = \frac{i-a}{n+1-2a} \mbox{,}$$
where $pp_i$ is the nonexceedance probability $F$ of the $i$th ascending
data value. The parameter $a$ specifies the plotting-position type, and $n$ is the sample size (length(x)
).
pp(x,a=0)
length()
.A=0
, which returns the Weibull plotting positionsvector
is returned.