# It is well known that standard deviation (sigma) of the
# sample mean is equal to sigma/sample_size.
MEAN <- 0
SIGMA <- 100
PAR <- vec2par(c(MEAN,SIGMA),type='nor')
CI <- qua2ci(0.5,PAR,n=10,nsim=20) # F=0.5-->median=mean
# Theoretrical sample mean sigma = 100/10 = 10
# L-moment theory: L-scale*sqrt(pi) = sigma
# Thus, it follows that
CI$elmoms$lambdas[2]/sqrt(pi)
# approaches 10 as nsim --> Inf.
# Another example.
D <- c(123,34,4,654,37,78, 93, 95, 120) # fake sample
lmr <- lmoms(D) # compute the lmoments of the data
WEI <- parwei(lmr) # estimate parameters of the weibull
CI <- qua2ci(0.75,WEI,20,nsim=20,ci=0.95)
# CI contains the estimate 95-percent
# confidence interval for the 75th-percent of the parent
# weibull distribution for size 20 samples from the parent
Run the code above in your browser using DataLab