Learn R Programming

lmomco (version 0.88)

quacau: Quantile Function of the Cauchy Distribution

Description

This function computes the quantiles of the Cauchy distribution given parameters ($\xi$ and $\alpha$) of the distribution provided by vec2par. The quantile function of the distribution is

$$x(F) = \xi + \alpha \times \tan(\pi(F-0.5)) \mbox{,}$$

where $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter and $\alpha$ is a scale parameter. R supports the quantile function of the Cauchy distribution through qcauchy. This function does not use qcauchy because qcauchy does not return Inf for $F = 1$ although it returns -Inf for $F = 0$.

Usage

quacau(f, para)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from parcau or vec2par.

Value

  • Quantile value for for nonexceedance probability $F$.

References

Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, vol. 43, pp. 299--314.

Gilchirst, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.

See Also

cdfcau, parcau, vec2par

Examples

Run this code
para <- c(12,12)
  quacau(.5,vec2par(para,type='cau'))

Run the code above in your browser using DataLab