parwak
.
The quantile function of the distribution is$$x(F) = \xi+\frac{\alpha}{\beta}(1-(1-F)^\beta)- \frac{\gamma}{\delta}(1-(1-F))^{-\delta} \mbox{,}$$
where $x(F)$ is the quantile for nonexceedance probability $F$,
$\xi$ is a location parameter, $\alpha$ and $\beta$
are scale parameters, and $\gamma$, and $\delta$ are
shape parameters. The five returned parameters from parwak
in order
are $\xi$, $\alpha$, $\beta$, $\gamma$, and $\delta$.
quawak(f, wakpara)
parwak
or similar.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
cdfwak
, parwak
lmr <- lmom.ub(c(123,34,4,654,37,78))
quawak(0.5,parwak(lmr))
Run the code above in your browser using DataLab