$$\lambda_r = \frac{1}{r} \sum^{r-1}_{k=0}{(-1)^k {r-1 \choose k} \frac{r!\:I_r}{(r-k-1)!k!} } \mbox{, in which }$$
$$I_r = \int^1_0 X(F) \times F^{r-k-1}(1-F)^{k}\,\mathrm{d}F \mbox{,}$$
where $X(F)$ is the quantile function of the random variable $X$ for nonexceedance probability $F$, and $r$ represents the order of the L-moments. This function actually dispatches to theoTLmoms
with trim=0
argument.
theoLmoms(para,nmom=5,verbose=FALSE)
vec2par
.integrate
is used to perform the numerical integration, it might be useful to see selected messages regarding the numerical integration.list
is returned.theoTLmoms
, par2qua
, TLmoms
, lmom.ub
para <- vec2par(c(0,1),type='nor') # standard normal
TL00 <- theoLmoms(para) # compute ordinary L-moments
Run the code above in your browser using DataLab