data(DrillBitLifetime)
summary(DrillBitLifetime)
if (FALSE) {
data(DrillBitLifetime)
X <- DrillBitLifetime$LIFETIME
lmr <- lmoms(X); par <- lmom2par(lmr, type="gpa")
pwm <- pwmRC(X, threshold=3000); zeta <- pwm$zeta
lmrrc <- pwm2lmom(pwm$Bbetas)
rcpar <- pargpaRC(lmrrc, zeta=zeta)
XBAR <- lmomgpa(rcpar)$lambdas[1]
F <- nonexceeds(); P <- 100*F; x <- seq(min(X), max(X))
plot(sort(X), 100*pp(X), xlab="LIFETIME", ylab="PERCENT", xlim=c(1,10000))
rug(X, col=rgb(0,0,0,0.5))
lines(c(XBAR, XBAR), range(P), lty=2) # mean (expectation of life)
lines(cmlmomco(F, rcpar), P, lty=2) # conditional mean
points(XBAR, 0, pch=16)
lines(x, 100*plmomco(x, par), lwd=2, col=8) # fitted dist.
lines(x, 100*plmomco(x, rcpar), lwd=3, col=1) # fitted dist.
lines( rmlmomco(F, rcpar), P, col=4) # residual mean life
lines(rrmlmomco(F, rcpar), P, col=4, lty=2) # rev. residual mean life
lines(x, 1E4*hlmomco(x, rcpar), col=2) # hazard function
lines(x, 1E2*lrzlmomco(plmomco(x, rcpar), rcpar), col=3) # Lorenz func.
legend(4000, 40,
c("Mean (vertical) or conditional mean (dot at intersect.)",
"Fitted GPA naively to all data",
"Fitted GPA to right-censoring PWMs",
"Residual mean life", "Reversed residual mean life",
"Hazard function x 1E4", "Lorenz curve x 100"
), cex=0.75,
lwd=c(1, 2, 3, 1, 1, 1, 1), col=c(1, 8, 1, 4, 4, 2, 3),
lty=c(2, 1, 1, 1, 2, 1, 1), pch=rep(NA, 8))
}
Run the code above in your browser using DataLab