Learn R Programming

lmomco (version 2.4.14)

bfrlmomco: Bonferroni Curve of the Distributions

Description

This function computes the Bonferroni Curve for quantile function \(x(F)\) (par2qua, qlmomco). The function is defined by Nair et al. (2013, p. 179) as $$B(u) = \frac{1}{\mu u}\int_0^u x(p)\; \mathrm{d}p\mbox{,}$$ where \(B(u)\) is Bonferroni curve for quantile function \(x(F)\) and \(\mu\) is the conditional mean for quantile \(u=0\) (cmlmomco). The Bonferroni curve is related to the Lorenz curve (\(L(u)\), lrzlmomco) by $$B(u) = \frac{L(u)}{u}\mbox{.}$$

Usage

bfrlmomco(f, para)

Value

Bonferroni curve value for \(F\).

Arguments

f

Nonexceedance probability (\(0 \le F \le 1\)).

para

The parameters from lmom2par or vec2par.

Author

W.H. Asquith

References

Nair, N.U., Sankaran, P.G., and Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.

See Also

qlmomco, lrzlmomco

Examples

Run this code
# It is easiest to think about residual life as starting at the origin, units in days.
A <- vec2par(c(0.0, 2649, 2.11), type="gov") # so set lower bounds = 0.0

"afunc" <- function(u) { return(par2qua(u,A,paracheck=FALSE)) }
f <- 0.65 # Both computations report: 0.5517342
Bu1 <- 1/(cmlmomco(f=0,A)*f) * integrate(afunc, 0, f)$value
Bu2 <- bfrlmomco(f, A)

Run the code above in your browser using DataLab