This function computes the cumulative probability or nonexceedance probability of the Gamma distribution given parameters (\(\alpha\) and \(\beta\)) computed by pargam
. The cumulative distribution function has no explicit form but is expressed as an integral:
$$F(x) = \frac{\beta^{-\alpha}}{\Gamma(\alpha)}\int_0^x t^{\alpha - 1}
\exp(-t/\beta)\; \mbox{d}t \mbox{,}$$
where \(F(x)\) is the nonexceedance probability for the quantile \(x\), \(\alpha\) is a shape parameter, and \(\beta\) is a scale parameter.
Alternatively, a three-parameter version is available following the parameterization of the Generalized Gamma distribution used in the gamlss.dist package and is
$$F(x) =\frac{\theta^\theta\, |\nu|}{\Gamma(\theta)}\int_0^x \frac{z^\theta}{x}\,\mathrm{exp}(-z\theta)\; \mbox{d}x \mbox{,}$$
where \(z =(x/\mu)^\nu\), \(\theta = 1/(\sigma^2\,|\nu|^2)\) for \(x > 0\), location parameter \(\mu > 0\), scale parameter \(\sigma > 0\), and shape parameter \(-\infty < \nu < \infty\). The three parameter version is automatically triggered if the length of the para
element is three and not two.
cdfgam(x, para)
Nonexceedance probability (\(F\)) for \(x\).
A real value vector.
The parameters from pargam
or vec2par
.
W.H. Asquith
Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
pdfgam
, quagam
, lmomgam
, pargam