Learn R Programming

lmomco (version 2.4.14)

cdfgep: Cumulative Distribution Function of the Generalized Exponential Poisson Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Generalized Exponential Poisson distribution given parameters (\(\beta\), \(\kappa\), and \(h\)) computed by pargep. The cumulative distribution function is $$F(x) = \left(\frac{1 - \exp[-h + h\exp(-\eta x)]}{1 - \exp(-h)}\right)^\kappa\mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x > 0\), \(\eta = 1/\beta\), \(\beta > 0\) is a scale parameter, \(\kappa > 0\) is a shape parameter, and \(h > 0\) is another shape parameter.

Usage

cdfgep(x, para)

Value

Nonexceedance probability (\(F\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from pargep or vec2par.

Author

W.H. Asquith

References

Barreto-Souza, W., and Cribari-Neto, F., 2009, A generalization of the exponential-Poisson distribution: Statistics and Probability, 79, pp. 2493--2500.

See Also

pdfgep, quagep, lmomgep, pargep

Examples

Run this code
gep <- list(para=c(2, 1.5, 3), type="gep")
cdfgep(0.48,gep)

Run the code above in your browser using DataLab