Learn R Programming

lmomco (version 2.4.14)

cdfkur: Cumulative Distribution Function of the Kumaraswamy Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Kumaraswamy distribution given parameters (\(\alpha\) and \(\beta\)) computed by parkur. The cumulative distribution function is $$F(x) = 1 - (1-x^\alpha)^\beta \mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x\), \(\alpha\) is a shape parameter, and \(\beta\) is a shape parameter.

Usage

cdfkur(x, para)

Value

Nonexceedance probability (\(F\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parkur or vec2par.

Author

W.H. Asquith

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v. 6, pp. 70--81.

See Also

pdfkur, quakur, lmomkur, parkur

Examples

Run this code
  lmr <- lmoms(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  cdfkur(0.5,parkur(lmr))

Run the code above in your browser using DataLab