Learn R Programming

lmomco (version 2.4.14)

cdfray: Cumulative Distribution Function of the Rayleigh Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Rayleigh distribution given parameters (\(\xi\) and \(\alpha\)) computed by parray. The cumulative distribution function is $$F(x) = 1 - \mathrm{exp}[-(x - \xi)^2/(2\alpha^2)]\mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.

Usage

cdfray(x, para)

Value

Nonexceedance probability (\(F\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parray or vec2par.

Author

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

pdfray, quaray, lmomray, parray

Examples

Run this code
  lmr <- lmoms(c(123,34,4,654,37,78))
  cdfray(50,parray(lmr))

Run the code above in your browser using DataLab