cdfray: Cumulative Distribution Function of the Rayleigh Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Rayleigh distribution given parameters (\(\xi\) and \(\alpha\)) computed by parray. The cumulative distribution function is
$$F(x) = 1 - \mathrm{exp}[-(x - \xi)^2/(2\alpha^2)]\mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.
Usage
cdfray(x, para)
Value
Nonexceedance probability (\(F\)) for \(x\).
Arguments
x
A real value vector.
para
The parameters from parray or vec2par.
Author
W.H. Asquith
References
Hosking, J.R.M., 1986, The theory of probability weighted moments:
Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.