Learn R Programming

lmomco (version 2.4.14)

cdfsmd: Cumulative Distribution Function of the Singh--Maddala Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Singh--Maddala (Burr Type XII) distribution given parameters (\(a\), \(b\), and \(q\)) of the distribution computed by parsmd. The cumulative distribution function is $$F(x) = 1 - \biggl(1 + \bigl[ (x - \xi) / a \bigr]^b \biggl)^{-q}\mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x\) with \(0 \le x \le \infty\), \(\xi\) is a location parameter, \(a\) is a scale parameter (\(a > 0\)), \(b\) is a shape parameter (\(b > 0\)), and \(q\) is another shape parameter (\(q > 0\)).

Usage

cdfsmd(x, para)

Value

Nonexceedance probability (\(F\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parsmd or vec2par.

Author

W.H. Asquith

References

Kumar, D., 2017, The Singh--Maddala distribution---Properties and estimation: International Journal of System Assurance Engineering and Management, v. 8, no. S2, 15 p., tools:::Rd_expr_doi("10.1007/s13198-017-0600-1").

Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121--131, tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206").

See Also

pdfsmd, quasmd, lmomsmd, parsmd