Learn R Programming

lmomco (version 2.4.14)

cdftri: Cumulative Distribution Function of the Asymmetric Triangular Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Asymmetric Triangular distribution given parameters (\(\nu\), \(\omega\), and \(\psi\)) computed by partri. The cumulative distribution function is $$F(x) = \frac{(x - \nu)^2}{(\omega-\nu)(\psi-\nu)}\mbox{,}$$ for \(x < \omega\), $$F(x) = 1 - \frac{(\psi - x)^2}{(\psi - \omega)(\psi - \nu)}\mbox{,}$$ for \(x > \omega\), and $$F(x) = \frac{(\omega - \nu)}{(\psi - \nu)}\mbox{,}$$ for \(x = \omega\) where \(x(F)\) is the quantile for nonexceedance probability \(F\), \(\nu\) is the minimum, \(\psi\) is the maximum, and \(\omega\) is the mode of the distribution.

Usage

cdftri(x, para)

Value

Nonexceedance probability (\(F\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from partri or vec2par.

Author

W.H. Asquith

See Also

pdftri, quatri, lmomtri, partri

Examples

Run this code
  lmr <- lmoms(c(46, 70, 59, 36, 71, 48, 46, 63, 35, 52))
  cdftri(50,partri(lmr))

Run the code above in your browser using DataLab