Learn R Programming

lmomco (version 2.4.14)

gini.mean.diff: Gini Mean Difference Statistic

Description

The Gini mean difference statistic \(\mathcal{G}\) is a robust estimator of distribution scale and is closely related to the second L-moment \(\lambda_2 = \mathcal{G}/2\). $$\mathcal{G} = \frac{2}{n(n-1)}\sum_{i=1}^n (2i - n - 1) x_{i:n}\mbox{,}$$ where \(x_{i:n}\) are the sample order statistics.

Usage

gini.mean.diff(x)

Value

An R

list is returned.

gini

The gini mean difference \(\mathcal{G}\).

L2

The L-scale (second L-moment) because \(\lambda_2 = 0.5\times\mathcal{G}\) (see lmom.ub).

source

An attribute identifying the computational source of the Gini's Mean Difference: “gini.mean.diff”.

Arguments

x

A vector of data values that will be reduced to non-missing values.

Author

W.H. Asquith

References

Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.

Jurečková, J., and Picek, J., 2006, Robust statistical methods with R: Boca Raton, Fla., Chapman and Hall/CRC, ISBN 1--58488--454--1.

See Also

lmoms

Examples

Run this code
fake.dat <- c(123, 34, 4, 654, 37, 78)
gini <- gini.mean.diff(fake.dat)
lmr <- lmoms(fake.dat)
str(gini)
print(abs(gini$L2 - lmr$lambdas[2]))

Run the code above in your browser using DataLab