Learn R Programming

lmomco (version 2.4.14)

lmomTLgpa: Trimmed L-moments of the Generalized Pareto Distribution

Description

This function estimates the symmetrical trimmed L-moments (TL-moments) for \(t=1\) of the Generalized Pareto distribution given the parameters (\(\xi\), \(\alpha\), and \(\kappa\)) from parTLgpa. The TL-moments in terms of the parameters are $$\lambda^{(1)}_1 = \xi + \frac{\alpha(\kappa+5)}{(\kappa+3)(\kappa+2)} \mbox{,}$$ $$\lambda^{(1)}_2 = \frac{6\alpha}{(\kappa+4)(\kappa+3)(\kappa+2)} \mbox{,}$$ $$\tau^{(1)}_3 = \frac{10(1-\kappa)}{9(\kappa+5)} \mbox{, and}$$ $$\tau^{(1)}_4 = \frac{5(\kappa-1)(\kappa-2)}{4(\kappa+6)(\kappa+5)} \mbox{.}$$

Usage

lmomTLgpa(para)

Value

An R

list is returned.

lambdas

Vector of the trimmed L-moments. First element is \(\lambda^{(1)}_1\), second element is \(\lambda^{(1)}_2\), and so on.

ratios

Vector of the L-moment ratios. Second element is \(\tau^{(1)}\), third element is \(\tau^{(1)}_3\) and so on.

trim

Level of symmetrical trimming used in the computation, which is unity.

leftrim

Level of left-tail trimming used in the computation, which is unity.

rightrim

Level of right-tail trimming used in the computation, which is unity.

source

An attribute identifying the computational source of the TL-moments: “lmomTLgpa”.

Arguments

para

The parameters of the distribution.

Author

W.H. Asquith

References

Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299--314.

See Also

lmomgpa, parTLgpa, cdfgpa, pdfgpa, quagpa

Examples

Run this code
TL <- TLmoms(c(123,34,4,654,37,78,21,3400),trim=1)
TL
lmomTLgpa(parTLgpa(TL))

Run the code above in your browser using DataLab