Learn R Programming

lmomco (version 2.4.14)

lmomgpa: L-moments of the Generalized Pareto Distribution

Description

This function estimates the L-moments of the Generalized Pareto distribution given the parameters (\(\xi\), \(\alpha\), and \(\kappa\)) from pargpa. The L-moments in terms of the parameters are $$\lambda_1 = \xi + \frac{\alpha}{\kappa+1} \mbox{,}$$ $$\lambda_2 = \frac{\alpha}{(\kappa+2)(\kappa+1)} \mbox{,}$$ $$\tau_3 = \frac{(1-\kappa)}{(\kappa+3)} \mbox{, and}$$ $$\tau_4 = \frac{(1-\kappa)(2-\kappa)}{(\kappa+4)(\kappa+3)} \mbox{.}$$

Usage

lmomgpa(para)

Value

An R

list is returned.

lambdas

Vector of the L-moments. First element is \(\lambda_1\), second element is \(\lambda_2\), and so on.

ratios

Vector of the L-moment ratios. Second element is \(\tau\), third element is \(\tau_3\) and so on.

trim

Level of symmetrical trimming used in the computation, which is 0.

leftrim

Level of left-tail trimming used in the computation, which is NULL.

rightrim

Level of right-tail trimming used in the computation, which is NULL.

source

An attribute identifying the computational source of the L-moments: “lmomgpa”.

Arguments

para

The parameters of the distribution.

Author

W.H. Asquith

References

Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.

Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.

Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.

See Also

pargpa, cdfgpa, pdfgpa, quagpa

Examples

Run this code
lmr <- lmoms(c(123,34,4,654,37,78))
lmr
lmomgpa(pargpa(lmr))

Run the code above in your browser using DataLab