Learn R Programming

lmomco (version 2.4.14)

lmompdq4: L-moments of the Polynomial Density-Quantile4 Distribution

Description

This function estimates the L-moments of the Polynomial Density-Quantile4 distribution given the parameters (\(\xi\), \(\alpha\), and \(\kappa\)) from parpdq4. The L-moments in terms of the parameters are $$\lambda_1 = \xi\mbox{,}$$ $$\lambda_2 = \frac{\alpha}{\kappa} \bigl(1-\kappa^2\bigr)\, \mathrm{atanh}(\kappa)\mathrm{\ for\ } \kappa > 0\mbox{,}$$ $$\lambda_2 = \frac{\alpha}{\kappa} \bigl(1+\kappa^2\bigr)\, \mathrm{atan}(\kappa)\mathrm{\ for\ } \kappa < 0\mbox{,}$$ $$\tau_3 = 0 \mbox{, and}$$ $$\tau_4 = -\frac{1}{4} + \frac{5}{4\kappa}\biggl(\frac{1}{\kappa} - \frac{1}{\mathrm{atanh}(\kappa)} \biggr) \mathrm{\ for\ } \kappa > 0\mbox{,}$$ $$\tau_4 = -\frac{1}{4} - \frac{5}{4\kappa}\biggl(\frac{1}{\kappa} - \frac{1}{\mathrm{atan}(\kappa)} \biggr) \mathrm{\ for\ } \kappa < 0\mbox{,}$$

Usage

lmompdq4(para, paracheck=TRUE)

Value

An R

list is returned.

lambdas

Vector of the L-moments. First element is \(\lambda_1\), second element is \(\lambda_2\), and so on.

ratios

Vector of the L-moment ratios. Second element is \(\tau\), third element is \(\tau_3\) and so on.

trim

Level of symmetrical trimming used in the computation, which is 0.

leftrim

Level of left-tail trimming used in the computation, which is NULL.

rightrim

Level of right-tail trimming used in the computation, which is NULL.

ifail

A numeric field connected to the ifailtext; a value of 0 indicates fully successful operation of the function.

ifailtext

A message, instead of a warning, about the internal operations or operational limits of the function.

source

An attribute identifying the computational source of the L-moments: “lmompdq4”.

Arguments

para

The parameters of the distribution.

paracheck

A logical switch as to whether the validity of the parameters should be checked. Default is paracheck=TRUE.

Author

W.H. Asquith

References

Hosking, J.R.M., 2007, Distributions with maximum entropy subject to constraints on their L-moments or expected order statistics: Journal of Statistical Planning and Inference, v. 137, no. 9, pp. 2870--2891, tools:::Rd_expr_doi("10.1016/j.jspi.2006.10.010").

See Also

parpdq4, cdfpdq4, pdfpdq4, quapdq4