Learn R Programming

lmomco (version 2.4.14)

lmomray: L-moments of the Rayleigh Distribution

Description

This function estimates the L-moments of the Rayleigh distribution given the parameters (\(\xi\) and \(\alpha\)) from parray. The L-moments in terms of the parameters are $$\lambda_1 = \xi + \alpha\sqrt{\pi/2} \mbox{,}$$ $$\lambda_2 = \frac{1}{2} \alpha(\sqrt{2} - 1)\sqrt{\pi}\mbox{,}$$ $$\tau_3 = \frac{1 - 3/\sqrt{2} + 2/\sqrt{3}}{1 - 1/\sqrt{2}} = 0.1140 \mbox{, and}$$ $$\tau_4 = \frac{1 - 6/\sqrt{2} + 10/\sqrt{3} - 5\sqrt{4}}{1 - 1/\sqrt{2}} = 0.1054 \mbox{.}$$

Usage

lmomray(para)

Value

An R

list is returned.

lambdas

Vector of the L-moments. First element is \(\lambda_1\), second element is \(\lambda_2\), and so on.

ratios

Vector of the L-moment ratios. Second element is \(\tau\), third element is \(\tau_3\) and so on.

trim

Level of symmetrical trimming used in the computation, which is 0.

leftrim

Level of left-tail trimming used in the computation, which is NULL.

rightrim

Level of right-tail trimming used in the computation, which is NULL.

source

An attribute identifying the computational source of the L-moments: “lmomray”.

Arguments

para

The parameters of the distribution.

Author

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

parray, cdfray, pdfray, quaray

Examples

Run this code
lmr <- lmoms(c(123,34,4,654,37,78))
lmr
lmomray(parray(lmr))

Run the code above in your browser using DataLab