This function computes the L-moments of the Singh--Maddala (Burr Type XII) distribution given the parameters (\(\xi\), \(a\), \(b\), and \(q\)) from parsmd
. The first L-moment (\(\lambda_1\)) for \(b' = 1/b\) and \(R = a\Gamma(1 + b')\) is
$$\lambda_1 = R\times\biggl[\frac{a\Gamma(1q-b')}{\Gamma(1q)}\biggr] + \xi\mbox{.}$$
The second L-moment (\(\lambda_2\)) is $$\lambda_2 = R\times\biggl[\frac{1\Gamma(1q - b')}{\Gamma(1q)} - \frac{1\Gamma(2q - b')}{\Gamma(2q)}\biggr]\mbox{.}$$
The third L-moment (\(\lambda_3\)) is $$\lambda_3 = R\times\biggl[\frac{1\Gamma(1q - b')}{\Gamma(1q)} - \frac{3\Gamma(2q - b')}{\Gamma(2q)} + \frac{2\Gamma(3q - b')}{\Gamma(3q)}\biggr]\mbox{.}$$
The fourth L-moment (\(\lambda_4\)) is $$\lambda_4 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} - \frac{ 6\Gamma(2q - b')}{\Gamma(2q)} + \frac{10\Gamma(3q - b')}{\Gamma(3q)} - \frac{ 5\Gamma(4q - b')}{\Gamma(4q)}\biggr]\mbox{.}$$
The fifth L-moment (\(\lambda_5\)) (unique to lmomco development) is $$\lambda_5 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} - \frac{10\Gamma(2q - b')}{\Gamma(2q)} + \frac{30\Gamma(3q - b')}{\Gamma(3q)} - \frac{35\Gamma(4q - b')}{\Gamma(4q)} + \frac{14\Gamma(5q - b')}{\Gamma(5q)}\biggr]\mbox{.}$$
The sixth L-moment (\(\lambda_6\)) (unique to lmomco development) is $$\lambda_6 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} - \frac{ 15\Gamma(2q - b')}{\Gamma(2q)} + \frac{ 70\Gamma(3q - b')}{\Gamma(3q)} - \frac{140\Gamma(4q - b')}{\Gamma(4q)} +$$ $$\frac{126\Gamma(5q - b')}{\Gamma(5q)} - \frac{ 42\Gamma(6q - b')}{\Gamma(6q)}\biggr]\mbox{.}$$
lmomsmd(para)
An R
list
is returned.
Vector of the L-moments. First element is \(\lambda_1\), second element is \(\lambda_2\), and so on.
Vector of the L-moment ratios. Second element is \(\tau\), third element is \(\tau_3\) and so on.
Level of symmetrical trimming used in the computation, which is 0
.
Level of left-tail trimming used in the computation, which is NULL
.
Level of right-tail trimming used in the computation, which is NULL
.
An attribute identifying the computational source of the L-moments: “lmomsmd”.
The parameters of the distribution.
W.H. Asquith
Bhatti, F.A., Hamedani, G.G., Korkmaz, M.C., and Munir Ahmad, M., 2019, New modified Singh--Maddala distribution---Development, properties, characterizations, and applications: Journal of Data Science, v. 17, no. 3, pp. 551--574, tools:::Rd_expr_doi("10.6339/JDS.201907_17(3).0006").
Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121--131, tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206").
parsmd
, cdfsmd
, pdfsmd
, quasmd