# As of version 1.6.2, it is felt that in spirit of CRAN CPU
# reduction that the intensive operations of parTLgld() should
# be kept a bay.
if (FALSE) {
X <- rgamma(202,2) # simulate a skewed distribution
lmr <- TLmoms(X, trim=1) # compute trimmed L-moments
PARgldTL <- parTLgld(lmr) # fit the GLD
F <- pp(X) # plotting positions for graphing
plot(F,sort(X), col=8, cex=0.25)
lines(F, qlmomco(F,PARgldTL)) # show the best estimate
if(! is.null(PARgldTL$rest)) {
n <- length(PARgldTL$rest$xi)
other <- unlist(PARgldTL$rest[n,1:4]) # show alternative
lines(F, qlmomco(F,vec2par(other, type="gld")), col=2)
}
# Note in the extraction of other solutions that no testing for whether
# additional solutions were found is made. Also, it is quite possible
# that the other solutions "[n,1:4]" is effectively another numerical
# convergence on the primary solution. Some users of this example thus
# might not see two separate lines. Users are encouraged to inspect the
# rest of the solutions: print(PARgld$rest)
# For one run of the above example, the GLD results follow
#print(PARgldTL)
#$type
#[1] "gld"
#$para
# xi alpha kappa h
# 1.02333964 -3.86037875 -0.06696388 -0.22100601
#$delTau5
#[1] -0.02299319
#$error
#[1] 7.048409e-08
#$source
#[1] "pargld"
#$rest
# xi alpha kappa h attempt delTau5 error
#1 1.020725 -3.897500 -0.06606563 -0.2195527 6 -0.02302222 1.333402e-08
#2 1.021203 -3.895334 -0.06616654 -0.2196020 4 -0.02304333 8.663930e-11
#3 1.020684 -3.904782 -0.06596204 -0.2192197 5 -0.02306065 3.908918e-09
#4 1.019795 -3.917609 -0.06565792 -0.2187232 2 -0.02307092 2.968498e-08
#5 1.023654 -3.883944 -0.06668986 -0.2198679 7 -0.02315035 2.991811e-07
#6 -4.707935 -5.044057 5.89280906 -0.3261837 13 0.04168800 2.229672e-10
}
if (FALSE) {
F <- seq(.01,.99,.01)
plot(F,qlmomco(F, vec2par(c( 1.02333964, -3.86037875,
-0.06696388, -0.22100601), type="gld")),
type="l")
lines(F,qlmomco(F, vec2par(c(-4.707935, -5.044057,
5.89280906, -0.3261837), type="gld")))
}
Run the code above in your browser using DataLab