This function computes the probability density of the Eta-Mu (\(\eta:\mu\)) distribution given parameters (\(\eta\) and \(\mu\)) computed by paremu
. The probability density function is
$$
f(x) = \frac{4\sqrt{\pi}\mu^{\mu - 1/2}h^\mu}{\gamma(\mu)H^{\mu - 1/2}}\,x^{2\mu}\,\exp(-2\mu h x^2)\,I_{\mu-1/2}(2\mu H x^2)\mbox{,}
$$
where \(f(x)\) is the nonexceedance probability for quantile \(x\), and the modified Bessel function of the first kind is \(I_k(x)\), and the \(h\) and \(H\) are
$$
h = \frac{1}{1-\eta^2}\mbox{,}
$$
and
$$
H = \frac{\eta}{1-\eta^2}\mbox{,}
$$
for “Format 2” as described by Yacoub (2007). This format is exclusively used in the algorithms of the lmomco package.
If \(\mu=1\), then the Rice distribution results, although pdfrice
is not used. If \(\kappa \rightarrow 0\), then the exact Nakagami-m density function results with a close relation to the Rayleigh distribution.
Define \(m\) as $$m = 2\mu\biggl[1 + {\biggr(\frac{H}{h}\biggl)}^2 \biggr]\mbox{,}$$ where for a given \(m\), the parameter \(\mu\) must lie in the range $$m/2 \le \mu \le m\mbox{.}$$
The \(I_k(x)\) for real \(x > 0\) and noninteger \(k\) is $$I_k(x) = \frac{1}{\pi} \int_0^\pi \exp(x\cos(\theta)) \cos(k \theta)\; \mathrm{d}\theta - \frac{\sin(k\pi)}{\pi}\int_0^\infty \exp(-x \mathrm{cosh}(t) - kt)\; \mathrm{d}t\mbox{.}$$
pdfemu(x, para, paracheck=TRUE)
Probability density (\(f\)) for \(x\).
A real value vector.
The parameters from paremu
or vec2par
.
A logical controlling whether the parameters and checked for validity.
W.H. Asquith
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81
cdfemu
, quaemu
, lmomemu
, paremu