Learn R Programming

lmomco (version 2.4.14)

pdfemu: Probability Density Function of the Eta-Mu Distribution

Description

This function computes the probability density of the Eta-Mu (\(\eta:\mu\)) distribution given parameters (\(\eta\) and \(\mu\)) computed by paremu. The probability density function is $$ f(x) = \frac{4\sqrt{\pi}\mu^{\mu - 1/2}h^\mu}{\gamma(\mu)H^{\mu - 1/2}}\,x^{2\mu}\,\exp(-2\mu h x^2)\,I_{\mu-1/2}(2\mu H x^2)\mbox{,} $$ where \(f(x)\) is the nonexceedance probability for quantile \(x\), and the modified Bessel function of the first kind is \(I_k(x)\), and the \(h\) and \(H\) are $$ h = \frac{1}{1-\eta^2}\mbox{,} $$ and $$ H = \frac{\eta}{1-\eta^2}\mbox{,} $$ for “Format 2” as described by Yacoub (2007). This format is exclusively used in the algorithms of the lmomco package.

If \(\mu=1\), then the Rice distribution results, although pdfrice is not used. If \(\kappa \rightarrow 0\), then the exact Nakagami-m density function results with a close relation to the Rayleigh distribution.

Define \(m\) as $$m = 2\mu\biggl[1 + {\biggr(\frac{H}{h}\biggl)}^2 \biggr]\mbox{,}$$ where for a given \(m\), the parameter \(\mu\) must lie in the range $$m/2 \le \mu \le m\mbox{.}$$

The \(I_k(x)\) for real \(x > 0\) and noninteger \(k\) is $$I_k(x) = \frac{1}{\pi} \int_0^\pi \exp(x\cos(\theta)) \cos(k \theta)\; \mathrm{d}\theta - \frac{\sin(k\pi)}{\pi}\int_0^\infty \exp(-x \mathrm{cosh}(t) - kt)\; \mathrm{d}t\mbox{.}$$

Usage

pdfemu(x, para, paracheck=TRUE)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from paremu or vec2par.

paracheck

A logical controlling whether the parameters and checked for validity.

Author

W.H. Asquith

References

Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81

See Also

cdfemu, quaemu, lmomemu, paremu