This function computes the probability density function
of the Gamma distribution given parameters (\(\alpha\), shape, and \(\beta\), scale) computed by pargam
. The probability density function has no explicit form, but is expressed as an integral
$$f(x|\alpha, \beta)^{\mathrm{lmomco}} = \frac{1}{\beta^\alpha\,\Gamma(\alpha)}\, x^{\alpha - 1}\, \mathrm{exp}(-x/\beta) \mbox{,}$$
where \(f(x)\) is the probability density for the quantile \(x\), \(\alpha\) is a shape parameter, and \(\beta\) is a scale parameter.
Alternatively, a three-parameter version is available for this package following the parameterization of the Generalized Gamma distribution used in the gamlss.dist package and is
$$f(x|\mu,\sigma,\nu)_{\mathrm{gamlss.dist}}^{\mathrm{lmomco}}=\frac{\theta^\theta\, |\nu|}{\Gamma(\theta)}\,\frac{z^\theta}{x}\,\mathrm{exp}(-z\theta)\mbox{,}$$
where \(z =(x/\mu)^\nu\), \(\theta = 1/(\sigma^2\,|\nu|^2)\) for \(x > 0\), location parameter \(\mu > 0\), scale parameter \(\sigma > 0\), and shape parameter \(-\infty < \nu < \infty\). Note that for \(\nu = 0\) the distribution is log-Normal. The three parameter version is automatically triggered if the length of the para
element is three and not two.
pdfgam(x, para)
Probability density (\(f\)) for \(x\).
A real value vector.
The parameters from pargam
or vec2par
.
W.H. Asquith
Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
cdfgam
, quagam
, lmomgam
, pargam