Learn R Programming

lmomco (version 2.4.14)

pdfgep: Probability Density Function of the Generalized Exponential Poisson Distribution

Description

This function computes the probability density of the Generalized Exponential Poisson distribution given parameters (\(\beta\), \(\kappa\), and \(h\)) computed by pargep. The probability density function is $$f(x) = \frac{\kappa h \eta}{[1 - \exp(-h)]^\kappa}{1 - \exp[-h + h\exp(-\eta x)}\times\exp[-h - \eta x + h\exp(-\eta x)]\mbox{,}$$ where \(F(x)\) is the nonexceedance probability for quantile \(x > 0\), \(\eta = 1/\beta\), \(\beta > 0\) is a scale parameter, \(\kappa > 0\) is a shape parameter, and \(h > 0\) is another shape parameter.

Usage

pdfgep(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from pargep or vec2par.

Author

W.H. Asquith

References

Barreto-Souza, W., and Cribari-Neto, F., 2009, A generalization of the exponential-Poisson distribution: Statistics and Probability, 79, pp. 2493--2500.

See Also

pdfgep, quagep, lmomgep, pargep

Examples

Run this code
pdfgep(0.5, vec2par(c(10,2.9,1.5), type="gep"))
if (FALSE) {
x <- seq(0,3, by=0.01); ylim <- c(0,1.5)
plot(NA,NA, xlim=range(x), ylim=ylim, xlab="x", ylab="f(x)")
mtext("Barreto-Souza and Cribari-Neto (2009, fig. 1)")
K <- c(0.1, 1, 5, 10)
for(i in 1:length(K)) {
   gep <- vec2par(c(2,K[i],1), type="gep"); lines(x, pdfgep(x, gep), lty=i)
}
}

Run the code above in your browser using DataLab