Learn R Programming

lmomco (version 2.4.14)

pdfray: Probability Density Function of the Rayleigh Distribution

Description

This function computes the probability density of the Rayleigh distribution given parameters (\(\xi\) and \(\alpha\)) computed by parray. The probability density function is $$f(x) = \frac{x - \xi}{\alpha^2}\,\exp\!\left(\frac{-(x - \xi)^2}{2\alpha^2}\right)\mbox{,}$$ where \(f(x)\) is the nonexceedance probability for quantile \(x\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.

Usage

pdfray(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parray or similar.

Author

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, quaray, lmomray, parray

Examples

Run this code
  lmr <- lmoms(c(123,34,4,654,37,78))
  ray <- parray(lmr)
  x <- quaray(0.5,ray)
  pdfray(x,ray)

Run the code above in your browser using DataLab