pdfray: Probability Density Function of the Rayleigh Distribution
Description
This function computes the probability density of the Rayleigh distribution given parameters (\(\xi\) and \(\alpha\)) computed by parray. The probability density function is
$$f(x) = \frac{x - \xi}{\alpha^2}\,\exp\!\left(\frac{-(x - \xi)^2}{2\alpha^2}\right)\mbox{,}$$
where \(f(x)\) is the nonexceedance probability for quantile \(x\),
\(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.
Usage
pdfray(x, para)
Value
Probability density (\(f\)) for \(x\).
Arguments
x
A real value vector.
para
The parameters from parray or similar.
Author
W.H. Asquith
References
Hosking, J.R.M., 1986, The theory of probability weighted moments:
Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.