Learn R Programming

lmomco (version 2.4.14)

pdfrevgum: Probability Density Function of the Reverse Gumbel Distribution

Description

This function computes the probability density of the Reverse Gumbel distribution given parameters (\(\xi\) and \(\alpha\)) computed by parrevgum. The probability density function is $$f(x) = \alpha^{-1} \exp(Y) [\exp(\exp[-\exp(Y)])] \mbox{,}$$ where $$Y = \frac{x - \xi}{\alpha} \mbox{,}$$ where \(f(x)\) is the probability density for quantile \(x\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.

Usage

pdfrevgum(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parrevgum or vec2par.

Author

W.H. Asquith

References

Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.

Hosking, J.R.M., 1995, The use of L-moments in the analysis of censored data, in Recent Advances in Life-Testing and Reliability, edited by N. Balakrishnan, chapter 29, CRC Press, Boca Raton, Fla., pp. 546--560.

See Also

cdfrevgum, quarevgum, lmomrevgum, parrevgum

Examples

Run this code
# See p. 553 of Hosking (1995)
# Data listed in Hosking (1995, table 29.3, p. 553)
D <- c(-2.982, -2.849, -2.546, -2.350, -1.983, -1.492, -1.443,
       -1.394, -1.386, -1.269, -1.195, -1.174, -0.854, -0.620,
       -0.576, -0.548, -0.247, -0.195, -0.056, -0.013,  0.006,
        0.033,  0.037,  0.046,  0.084,  0.221,  0.245,  0.296)
D <- c(D,rep(.2960001,40-28)) # 28 values, but Hosking mentions
                              # 40 values in total
z <-  pwmRC(D,threshold=.2960001)
str(z)
# Hosking reports B-type L-moments for this sample are
# lamB1 = -0.516 and lamB2 = 0.523
btypelmoms <- pwm2lmom(z$Bbetas)
# My version of R reports lamB1 = -0.5162 and lamB2 = 0.5218
str(btypelmoms)
rg.pars <- parrevgum(btypelmoms,z$zeta)
str(rg.pars)
# Hosking reports xi=0.1636 and alpha=0.9252 for the sample
# My version of R reports xi = 0.1635 and alpha = 0.9254
# Now one can continue one with a plotting example.
if (FALSE) {
F  <- nonexceeds()
PP <- pp(D) # plotting positions of the data
D  <- sort(D)
plot(D,PP)
lines(D,cdfrevgum(D,rg.pars))
# Now finally do the PDF
F <- seq(0.01,0.99,by=.01)
x <- quarevgum(F,rg.pars)
plot(x,pdfrevgum(x,rg.pars),type='l')
}

Run the code above in your browser using DataLab