Learn R Programming

lmomco (version 2.4.14)

pdfsla: Probability Density Function of the Slash Distribution

Description

This function computes the probability density of the Slash distribution given parameters (\(\xi\) and \(\alpha\)) provided by parsla. The probability density function is $$f(x) = \frac{\phi(0) - \phi(y)}{y^2} \mbox{,}$$ where \(f(x)\) is the probability density for quantile \(x\), \(y = (x - \xi)/\alpha\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter. The function \(\phi(y)\) is the probability density function of the Standard Normal distribution.

Usage

pdfsla(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parsla or vec2par.

Author

W.H. Asquith

References

Rogers, W.H., and Tukey, J.W., 1972, Understanding some long-tailed symmetrical distributions: Statistica Neerlandica, v. 26, no. 3, pp. 211--226.

See Also

cdfsla, quasla, lmomsla, parsla

Examples

Run this code
  sla <- vec2par(c(12,1.2),type='sla')
  x <- quasla(0.5,sla)
  pdfsla(x,sla)

Run the code above in your browser using DataLab