Learn R Programming

lmomco (version 2.4.14)

pdfsmd: Probability Density Function of the Singh--Maddala Distribution

Description

This function computes the probability density of the Singh--Maddala (Burr Type XII) distribution given parameters (\(a\), \(b\), and \(q\)) computed by parsmd. The probability density function is

$$f(x) = \frac{b \cdot q \cdot x^{b-1}}{a^b \biggl(1 + \bigl[(x-\xi)/a\bigr]^b \biggr)^{q+1}}\mbox{,}$$

where \(f(x)\) is the probability density for quantile \(x\) with \(0 \le x \le \infty\), \(\xi\) is a location parameter, \(a\) is a scale parameter (\(a > 0\)), \(b\) is a shape parameter (\(b > 0\)), and \(q\) is another shape parameter (\(q > 0\)).

Usage

pdfsmd(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from parsmd or vec2par.

Author

W.H. Asquith

References

Kumar, D., 2017, The Singh--Maddala distribution---Properties and estimation: International Journal of System Assurance Engineering and Management, v. 8, no. S2, 15 p., tools:::Rd_expr_doi("10.1007/s13198-017-0600-1").

Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121--131, tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206").

See Also

cdfsmd, quasmd, lmomsmd, parsmd