Learn R Programming

lmomco (version 2.4.14)

pdftri: Probability Density Function of the Asymmetric Triangular Distribution

Description

This function computes the probability density of the Asymmetric Triangular distribution given parameters (\(\nu\), \(\omega\), and \(\psi\)) computed by partri. The probability density function is $$f(x) = \frac{2(x-\nu)}{(\omega - \nu)(\psi - \nu)}\mbox{,}$$ for \(x < \omega\), $$f(x) = \frac{2(\psi-x)}{(\psi - \omega)(\psi - \nu)}\mbox{,}$$ for \(x > \omega\), and $$f(x) = \frac{2}{(\psi - \nu)}\mbox{,}$$ for \(x = \omega\) where \(x(F)\) is the quantile for nonexceedance probability \(F\), \(\nu\) is the minimum, \(\psi\) is the maximum, and \(\omega\) is the mode of the distribution.

Usage

pdftri(x, para)

Value

Probability density (\(f\)) for \(x\).

Arguments

x

A real value vector.

para

The parameters from partri or vec2par.

Author

W.H. Asquith

See Also

pdftri, quatri, lmomtri, partri

Examples

Run this code
  tri <- vec2par(c(-120, 102, 320), type="tri")
  x <- quatri(nonexceeds(),tri)
  pdftri(x,tri)

Run the code above in your browser using DataLab