This function computes the quantiles of the Cauchy distribution given parameters (\(\xi\) and \(\alpha\)) of the distribution provided by parcau
. The quantile function of the distribution is
$$x(F) = \xi + \alpha \times \tan(\pi(F-0.5)) \mbox{,}$$
where \(x(F)\) is the quantile for nonexceedance probability \(F\), \(\xi\) is a location parameter and \(\alpha\) is a scale parameter. The quantile function of the Cauchy distribution is supported by R function qcauchy
. This function does not use qcauchy
because qcauchy
does not return Inf
for \(F = 1\) although it
returns -Inf
for \(F = 0\).
quacau(f, para, paracheck=TRUE)
Quantile value for for nonexceedance probability \(F\).
Nonexceedance probability (\(0 \le F \le 1\)).
The parameters from parcau
or vec2par
.
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the distribution quantile function in the context of TL-moments with nonzero trimming.
W.H. Asquith
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299--314.
Gilchirst, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.
cdfcau
, pdfcau
, lmomcau
, parcau
para <- c(12,12)
quacau(.5,vec2par(para,type='cau'))
Run the code above in your browser using DataLab