This function computes the quantiles of the Eta-Mu (\(\eta:\mu\)) distribution given \(\eta\) and \(\mu\)) computed by paremu
. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfemu
) is used.
quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)
Quantile value for nonexceedance probability \(F\).
Nonexceedance probability (\(0 \le F \le 1\)).
The parameters from paremu
or vec2par
.
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of pdfemu
.
A close-enough error term for the recursion process.
W.H. Asquith
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81
cdfemu
, pdfemu
, lmomemu
, paremu