This function computes the quantiles of the Generalized Logistic distribution given parameters (\(\xi\), \(\alpha\), and \(\kappa\)) computed by
parglo
. The quantile function is
$$x(F) = \xi + \frac{\alpha}{\kappa}\left(1-\left(\frac{1-F}{F}\right)^\kappa\right)\mbox{,}$$
for \(\kappa \ne 0\), and
$$x(F) = \xi - \alpha\log{\left(\frac{1-F}{F}\right)}\mbox{,}$$
for \(\kappa = 0\), where \(x(F)\) is the quantile for nonexceedance probability \(F\), \(\xi\) is a location parameter, \(\alpha\) is a scale parameter, and \(\kappa\) is a shape parameter.
quaglo(f, para, paracheck=TRUE)
Quantile value for for nonexceedance probability \(F\).
Nonexceedance probability (\(0 \le F \le 1\)).
The parameters from parglo
or vec2par
.
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
W.H. Asquith
Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105--124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
cdfglo
, pdfglo
, lmomglo
, parglo
lmr <- lmoms(c(123,34,4,654,37,78))
quaglo(0.5,parglo(lmr))
Run the code above in your browser using DataLab