This function computes the quantiles of the Kappa-Mu (\(\kappa:\mu\)) distribution given parameters (\(\kappa\) and \(\alpha\)) computed by parkmu
. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfkmu
) is used.
quakmu(f, para, paracheck=TRUE, getmed=FALSE, qualo=NA, quahi=NA, verbose=FALSE,
marcumQ=TRUE, marcumQmethod=c("chisq", "delta", "integral"))
Quantile value for nonexceedance probability \(F\).
Nonexceedance probability (\(0 \le F \le 1\)).
The parameters from parkmu
or vec2par
.
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
Same argument for cdfkmu
. Because of nesting a quakmu
call in cdfkmu
, this argument and the next two are shown here are to avoid confusion in use of ...
instead. This argument should not overrided by the user.
A lower limit of the range of \(x\) to look for a uniroot
of \(F(x)\).
An upper limit of the range of \(x\) to look for a uniroot
of \(F(x)\).
Should alert messages be shown by message()
?
Same argument for cdfkmu
, which the user can set change.
Same argument for cdfkmu
, which the user can set change.
W.H. Asquith
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81
cdfkmu
, pdfkmu
, lmomkmu
, parkmu
quakmu(0.75,vec2par(c(0.9, 1.5), type="kmu"))
Run the code above in your browser using DataLab