Learn R Programming

lmomco (version 2.4.14)

quaray: Quantile Function of the Rayleigh Distribution

Description

This function computes the quantiles of the Rayleigh distribution given parameters (\(\xi\) and \(\alpha\)) computed by parray. The quantile function is $$x(F) = \xi + \sqrt{-2\alpha^2\log(1-F)} \mbox{,}$$ where \(x(F)\) is the quantile for nonexceedance probability \(F\), \(\xi\) is a location parameter, and \(\alpha\) is a scale parameter.

Usage

quaray(f, para, paracheck=TRUE)

Value

Quantile value for nonexceedance probability \(F\).

Arguments

f

Nonexceedance probability (\(0 \le F \le 1\)).

para

The parameters from parray or vec2par.

paracheck

A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.

Author

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, pdfray, lmomray, parray

Examples

Run this code
  lmr <- lmoms(c(123,34,4,654,37,78))
  quaray(0.5,parray(lmr))

Run the code above in your browser using DataLab