if (FALSE) {
tlmrglo(leftrim=1, rightrim=3, xi=0, alpha=4)
tlmrglo(leftrim=1, rightrim=3, xi=32, alpha=83) # another slow example
}
if (FALSE) {
# Plot and L-moment ratio diagram of Tau3 and Tau4
# with exclusive focus on the GLO distribution.
plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
xlim=c(-.8, .7), ylim=c(-.1, .8),
nolimits=TRUE, nogev=TRUE, nogpa=TRUE, nope3=TRUE,
nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
nogum=TRUE, noray=TRUE, nouni=TRUE)
# Compute the TL-moment ratios for trimming of one
# value on the left and four on the right. Notice the
# expansion of the kappa parameter space from
# -1 < k < -1 to something larger based on manual
# adjustments until blue curve encompassed the plot.
J <- tlmrglo(kbeg=-2.5, kend=1.9, leftrim=1, rightrim=4)
lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE
# Compute the TL-moment ratios for trimming of four
# values on the left and one on the right.
J <- tlmrglo(kbeg=-1.65, kend=3, leftrim=4, rightrim=1)
lines(J$tau3, J$tau4, lwd=2, col=4) # BLUE CURVE
# The kbeg and kend can be manually changed to see how
# the resultant curve expands or contracts on the
# extent of the L-moment ratio diagram.
}
if (FALSE) {
# Following up, let us plot the two quantile functions
LM <- vec2par(c(0,1,0.99), type='glo', paracheck=FALSE)
TLM <- vec2par(c(0,1,3.00), type='glo', paracheck=FALSE)
F <- nonexceeds()
plot(qnorm(F), quaglo(F, LM), type="l")
lines(qnorm(F), quaglo(F, TLM, paracheck=FALSE), col=2)
# Notice how the TLM parameterization runs off towards
# infinity much much earlier than the conventional
# near limits of the GLO.
}
Run the code above in your browser using DataLab