Learn R Programming

lmomco (version 2.4.14)

tlmrglo: Compute Select TL-moment ratios of the Generalized Logistic Distribution

Description

This function computes select TL-moment ratios of the Generalized Logistic distribution for defaults of \(\xi = 0\) and \(\alpha = 1\). This function can be useful for plotting the trajectory of the distribution on TL-moment ratio diagrams of \(\tau^{(t_1,t_2)}_2\), \(\tau^{(t_1,t_2)}_3\), \(\tau^{(t_1,t_2)}_4\), \(\tau^{(t_1,t_2)}_5\), and \(\tau^{(t_1,t_2)}_6\). In reality, \(\tau^{(t_1,t_2)}_2\) is dependent on the values for \(\xi\) and \(\alpha\). If the message

Error in integrate(XofF, 0, 1) : the integral is probably divergent

occurs then careful adjustment of the shape parameter \(\kappa\) parameter range is very likely required. Remember that TL-moments with nonzero trimming permit computation of TL-moments into parameter ranges beyond those recognized for the usual (untrimmed) L-moments.

Usage

tlmrglo(trim=NULL, leftrim=NULL, rightrim=NULL,
        xi=0, alpha=1, kbeg=-.99, kend=0.99, by=.1)

Value

An R

list is returned.

tau2

A vector of the \(\tau^{(t_1,t_2)}_2\) values.

tau3

A vector of the \(\tau^{(t_1,t_2)}_3\) values.

tau4

A vector of the \(\tau^{(t_1,t_2)}_4\) values.

tau5

A vector of the \(\tau^{(t_1,t_2)}_5\) values.

tau6

A vector of the \(\tau^{(t_1,t_2)}_6\) values.

Arguments

trim

Level of symmetrical trimming to use in the computations. Although NULL in the argument list, the default is 0---the usual L-moment ratios are returned.

leftrim

Level of trimming of the left-tail of the sample.

rightrim

Level of trimming of the right-tail of the sample.

xi

Location parameter of the distribution.

alpha

Scale parameter of the distribution.

kbeg

The beginning \(\kappa\) value of the distribution.

kend

The ending \(\kappa\) value of the distribution.

by

The increment for the seq() between kbeg and kend.

Author

W.H. Asquith

See Also

quaglo, theoTLmoms

Examples

Run this code
if (FALSE) {
tlmrglo(leftrim=1, rightrim=3, xi=0, alpha=4)
tlmrglo(leftrim=1, rightrim=3, xi=32, alpha=83) # another slow example
}
if (FALSE) {
  # Plot and L-moment ratio diagram of Tau3 and Tau4
  # with exclusive focus on the GLO distribution.
  plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
             xlim=c(-.8, .7), ylim=c(-.1, .8),
             nolimits=TRUE, nogev=TRUE, nogpa=TRUE, nope3=TRUE,
             nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
             nogum=TRUE, noray=TRUE, nouni=TRUE)

  # Compute the TL-moment ratios for trimming of one
  # value on the left and four on the right. Notice the
  # expansion of the kappa parameter space from
  # -1 < k < -1 to something larger based on manual
  # adjustments until blue curve encompassed the plot.
  J <- tlmrglo(kbeg=-2.5, kend=1.9, leftrim=1, rightrim=4)
  lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE

  # Compute the TL-moment ratios for trimming of four
  # values on the left and one on the right.
  J <- tlmrglo(kbeg=-1.65, kend=3, leftrim=4, rightrim=1)
  lines(J$tau3, J$tau4, lwd=2, col=4) # BLUE CURVE

  # The kbeg and kend can be manually changed to see how
  # the resultant curve expands or contracts on the
  # extent of the L-moment ratio diagram.
}
if (FALSE) {
  # Following up, let us plot the two quantile functions
  LM  <- vec2par(c(0,1,0.99), type='glo', paracheck=FALSE)
  TLM <- vec2par(c(0,1,3.00), type='glo', paracheck=FALSE)
  F <- nonexceeds()
  plot(qnorm(F),  quaglo(F, LM), type="l")
  lines(qnorm(F), quaglo(F, TLM, paracheck=FALSE), col=2)
  # Notice how the TLM parameterization runs off towards
  # infinity much much earlier than the conventional
  # near limits of the GLO.
}

Run the code above in your browser using DataLab