if (FALSE) {
tlmrgpa(leftrim=7, rightrim=2, xi=0, alpha=31)
tlmrgpa(leftrim=7, rightrim=2, xi=143, alpha=98) # another slow example
}
if (FALSE) {
# Plot and L-moment ratio diagram of Tau3 and Tau4
# with exclusive focus on the GPA distribution.
plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
xlim=c(-.8, .7), ylim=c(-.1, .8),
nolimits=TRUE, nogev=TRUE, noglo=TRUE, nope3=TRUE,
nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
nogum=TRUE, noray=TRUE, nouni=TRUE)
# Compute the TL-moment ratios for trimming of one
# value on the left and four on the right. Notice the
# expansion of the kappa parameter space from k > -1.
J <- tlmrgpa(kbeg=-3.2, kend=50, by=.05, leftrim=1, rightrim=4)
lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE
# Notice the gap in the curve near tau3 = 0.1
# Compute the TL-moment ratios for trimming of four
# values on the left and one on the right.
J <- tlmrgpa(kbeg=-1.6, kend=8, leftrim=4, rightrim=1)
lines(J$tau3, J$tau4, lwd=2, col=3) # GREEN CURVE
# The kbeg and kend can be manually changed to see how
# the resultant curve expands or contracts on the
# extent of the L-moment ratio diagram.
}
if (FALSE) {
# Following up, let us plot the two quantile functions
LM <- vec2par(c(0,1,0.99), type='gpa', paracheck=FALSE)
TLM <- vec2par(c(0,1,3.00), type='gpa', paracheck=FALSE)
F <- nonexceeds()
plot(qnorm(F), quagpa(F, LM), type="l")
lines(qnorm(F), quagpa(F, TLM, paracheck=FALSE), col=2)
# Notice how the TLM parameterization runs off towards
# infinity much much earlier than the conventional
# near limits of the GPA.
}
Run the code above in your browser using DataLab