# NOT RUN {
## Fit two competing, non-nested models for aggregate
## consumption, as in Greene (1993), Examples 7.11 and 7.12
## load data and compute lags
data(USDistLag)
usdl <- na.contiguous(cbind(USDistLag, lag(USDistLag, k = -1)))
colnames(usdl) <- c("con", "gnp", "con1", "gnp1")
## C(t) = a0 + a1*Y(t) + a2*C(t-1) + u
fm1 <- lm(con ~ gnp + con1, data = usdl)
## C(t) = b0 + b1*Y(t) + b2*Y(t-1) + v
fm2 <- lm(con ~ gnp + gnp1, data = usdl)
## Encompassing model
fm3 <- lm(con ~ gnp + con1 + gnp1, data = usdl)
## Cox test in both directions:
coxtest(fm1, fm2)
## ...and do the same for jtest() and encomptest().
## Notice that in this particular case they are coincident.
jtest(fm1, fm2)
encomptest(fm1, fm2)
## the encompassing test is essentially
waldtest(fm1, fm3, fm2)
# }
Run the code above in your browser using DataLab