localdepth.similarity(x, y = NULL, tau, use = c("volume", "diameter"), method = c("simplicial", "ellipsoid", "mahalanobis"), type = c("exact", "approx"), nsamp = "all", nmax = 1, tol = 10^(-9), dimension=NULL, location = NULL, covariance = NULL, weight = NULL)
x
is a circular
vector, a circular version is used. Avoid ties by wiggling the data. The function only issues a warning for ties.x
, or NULL
. If NULL
, x
is usedquantile.localdepth
to evaluate tau
using a quantile of the size of the objectsmethod
equal to "simplicial"
or "ellipsoid"
allowed statistics are "volume"
and "diameter"
. For method
equal to "mahalanobis"
this parameter is not used and the only available statistic is pairwise Mahalanobis' distancemethod="simplicial"
. See details."all"
, the size of all choose(NROW(x), NCOL(x)+1)
objects is evaluated. Otherwise, a simple random sample with replacement of size nsamp
is performed from the set of all possible objects.nsamp
is not equal to all
. If nmax=1
the number of searched objects can reach the number of possible objects (choose(NROW(x), NCOL(x)+1)
for simplicial and ellipsoid depth)method="ellipsoid"
. It is the squared length of the ellipsoid semimajor axis. If dimension
is NULL
, it is set to NCOL(x)
NULL
or a numeric vector; the NCOL(x)
means vector used in method
equal to "mahalanobis"
. If NULL
, apply(x, 2, mean)
is usedNULL
or a numeric matrix; the NCOL(x)*NCOL(x)
covariance matrix used in method
equal to "mahalanobis"
. If NULL
, cov(x)
is usedclass
localdepth.similarity
with the following components:max(localdepth)
max(depth)
num[1]
gives the number of objects used for the evaluation of the depth similarity; num[2]
is the number of objects used for the evaluation of the local depth similaritymethod="simplicial"
and type="exact"
, membership of the points in simplices is evaluated; when type="approx"
, an approximate membership function is used. See references below.
C. Agostinelli and M. Romanazzi (2008). Local depth of multidimensional data. Working paper n. 3/2008, Dipartimento di Statistica, Universita' Ca' Foscari, Venezia.
R.Y. Liu, J.M. Parelius and K. Singh (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference. The Annals of Statistics, 27, 783-858.
localdepth
data(cork)
tau <- quantile.localdepth(cork[,c(1,3)], probs=0.1, method='simplicial')
sim <- localdepth.similarity(cork[,c(1,3)], tau=tau, method='simplicial')
plot(hclust(d=as.dist(1-sim$localdepth/sim$max.localdepth)))
plot(hclust(d=as.dist(1-sim$depth/sim$max.depth)))
Run the code above in your browser using DataLab