Learn R Programming

localdepth (version 0.5-7)

localdepth.similarity: Local depth similarity

Description

The function evaluates depth and local depth similarity for a set of points with respect to a dataset.

Usage

localdepth.similarity(x, y = NULL, tau, use = c("volume", "diameter"), method = c("simplicial", "ellipsoid", "mahalanobis"), type = c("exact", "approx"), nsamp = "all", nmax = 1, tol = 10^(-9), dimension=NULL, location = NULL, covariance = NULL, weight = NULL)

Arguments

x
numeric; vector, dataframe or matrix. If x is a circular vector, a circular version is used. Avoid ties by wiggling the data. The function only issues a warning for ties.
y
numeric; vector, dataframe or matrix with the same number of columns as x, or NULL. If NULL, x is used
tau
numeric; threshold value for the evaluation of the local depth. Use function quantile.localdepth to evaluate tau using a quantile of the size of the objects
use
character; the statistic used to measure the size of the objects. Currently, for method equal to "simplicial" or "ellipsoid" allowed statistics are "volume" and "diameter". For method equal to "mahalanobis" this parameter is not used and the only available statistic is pairwise Mahalanobis' distance
method
character; the type of (local) depth similarity to be evaluated
type
character; how to evaluate membership. Only active for method="simplicial". See details.
nsamp
character or numeric; the number of objects that are considered. If "all", the size of all choose(NROW(x), NCOL(x)+1) objects is evaluated. Otherwise, a simple random sample with replacement of size nsamp is performed from the set of all possible objects.
nmax
numeric; maximum fraction (in the range (0,1]) of objects to be considered when nsamp is not equal to all. If nmax=1 the number of searched objects can reach the number of possible objects (choose(NROW(x), NCOL(x)+1) for simplicial and ellipsoid depth)
tol
numeric; tolerance parameter to be fixed depending on the machine precision. Used to decide membership of points located near to the boundary of the objects
dimension
numeric; only used with method="ellipsoid". It is the squared length of the ellipsoid semimajor axis. If dimension is NULL, it is set to NCOL(x)
location
NULL or a numeric vector; the NCOL(x) means vector used in method equal to "mahalanobis". If NULL, apply(x, 2, mean) is used
covariance
NULL or a numeric matrix; the NCOL(x)*NCOL(x) covariance matrix used in method equal to "mahalanobis". If NULL, cov(x) is used
weight
experimental parameter used to weight entries in the similarity matrix. Not implemented in each method, dimension.

Value

The function returns an object of class localdepth.similarity with the following components:
localdepth
matrix of the local depth similarities
depth
matrix of the depth similarities
max.localdepth
max(localdepth)
max.depth
max(depth)
num
vector with two components. num[1] gives the number of objects used for the evaluation of the depth similarity; num[2] is the number of objects used for the evaluation of the local depth similarity
call
match.call() result. Note that this is called from the internal function
tau
value of the corresponding input parameter
use
value of the corresponding input parameter
tol
value of the corresponding input parameter
x
value of the corresponding input parameter
y
value of the corresponding input parameter
type
value of the corresponding input parameter
nsamp
value of the corresponding input parameter
method
value of the corresponding input parameter

Details

With method="simplicial" and type="exact", membership of the points in simplices is evaluated; when type="approx", an approximate membership function is used. See references below.

References

C. Agostinelli and M. Romanazzi (2007). Local depth of univariate distributions. Working paper n. 1/2007, Dipartimento di Statistica, Universita' Ca' Foscari, Venezia.

C. Agostinelli and M. Romanazzi (2008). Local depth of multidimensional data. Working paper n. 3/2008, Dipartimento di Statistica, Universita' Ca' Foscari, Venezia.

R.Y. Liu, J.M. Parelius and K. Singh (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference. The Annals of Statistics, 27, 783-858.

See Also

localdepth

Examples

Run this code
  data(cork)
  tau <- quantile.localdepth(cork[,c(1,3)], probs=0.1, method='simplicial')
  sim <- localdepth.similarity(cork[,c(1,3)], tau=tau, method='simplicial')
  plot(hclust(d=as.dist(1-sim$localdepth/sim$max.localdepth)))
  plot(hclust(d=as.dist(1-sim$depth/sim$max.depth)))

Run the code above in your browser using DataLab