Learn R Programming

logcondens (version 2.1.8)

Lhat_eta: Value of the Log-Likelihood Function L, where Input is in Eta-Parametrization

Description

Gives the value of

$$L(\phi) = \sum_{i=1}^m w_i \phi(x_i) - \int_{x_1}^{x_m} \exp(\phi(t)) dt$$

where \(\phi\) is parametrized via

$${\bold{\eta}}({\bold{\phi}}) = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^i (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$

Usage

Lhat_eta(x, w, eta)

Value

Value \(L({\bold{\phi}}) = L({\bold{\phi}}({\bold{\eta}}))\) of the log-likelihood function is returned.

Arguments

x

Vector of independent and identically distributed numbers, with strictly increasing entries.

w

Optional vector of nonnegative weights corresponding to \({\bold{x}_m}\).

eta

Some vector \({\bold{\eta}}\) of the same length as \({\bold{x}}\) and \({\bold{w}}\).