Suppose the random variable \(X\) has density function
$$g_\theta(x) = \frac{\theta \exp(\theta x)}{\exp(\theta) - 1}$$
for an arbitrary real number \(\theta\) and \(x \in [0,1]\). The function qloglin
is simply the
quantile function
$$G^{-1}_\theta(u) = \theta^{-1} \log \Big( 1 + (e^\theta - 1)u \Big)$$
in this model, for \(u \in [0,1]\). This quantile function is used for the computation of quantiles of \(\widehat F_m\) in quantilesLogConDens
.
qloglin(u, t)
Vector containing the quantiles \(G_n^{-1}(u_i)\) for \(i = 1, \ldots, d\).
Vector in \([0,1]^d\) where quantiles are to be computed at.
Parameter \(\theta\).
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Lutz Duembgen, duembgen@stat.unibe.ch,
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html