Learn R Programming

logcondens (version 2.1.8)

reparametrizations: Changes Between Parametrizations

Description

Given a vector \((\phi_1, \ldots, \phi_m)\) representing the values of a piecewise linear concave function at \(x_1, \ldots, x_m,\) etaphi returns a column vector with the entries

$${\bold{\eta}} = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^m (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$

The function phieta returns a vector with the entries

$${\bold{\phi}} = \Bigl(\eta_1, \Bigl(\frac{\phi_i-\phi_{i-1}}{x_i-x_{i-1}}\Bigr)_{i=2}^m\Bigr).$$

Usage

etaphi(x, eta)
phieta(x, phi)

Arguments

x

Vector of independent and identically distributed numbers, with strictly increasing entries.

eta

Vector with entries \(\eta_i = \eta(x_i).\)

phi

Vector with entries \(\phi_i = \phi(x_i).\)