LongData3d
is an objet containing joint longitudinal
data and some associate value (like time, individual
identifiant,...).
Object LongData3d
can be created using
the fonction longData3d
on a data.frame
or on an array
.
idAll
[vector(character)]
: Single identifier
for each of the longData3d (each individual). Usefull to export clusters.
idFewNA
[vector(character)]
: Restriction of
idAll
to the trajectories that does not have 'too many' missing
value. See maxNA
for 'too many' definition.
time
[numeric]
: Time at which measures are made.
varNames
[vector(character)]
: Names of the variable measured.
traj
[array(numeric)]
: Contains
the joint variable-trajectories. Each horizontal plan (first
dimension) corresponds to the joint-trajectories of an
individual. Vertical plans (second dimension) refer to the time at which measures
are made. Transversal plans (the third dimension) are for variables.
dimTraj
[vector3(numeric)]
: size of the array
traj
(ie dimTraj=c(length(idFewNA),length(time),length(varNames))
).
maxNA
[numeric]
or [vector(numeric)]
:
Individual whose trajectories contain 'too many' missing value
are exclude from traj
and will no be use in
the analysis. Their identifier is preserved in idAll
but
not in idFewNA
. 'too many' is define by maxNA
: a
trajectory with more missing than maxNA
is exclude.
When maxNA
is a single number, it is
recycled for all the variables.
reverse
[matrix(numeric)]
: if the trajectories
are scale using the function scale
, the 'scaling
parameters' (probably mean and standard deviation) are saved in
reverse
. This is usefull to restore the original data after a
scaling operation.
LongData3d
can be created by calling
the fonction longData3d
on a data.frame
or on an array
.
[vecteur(character)]: Gets the full list of individual
identifiant (the value of the slot idAll
)
[vecteur(character)]: Gets the list of individual
identifiant with not too many missing values (the value of the slot idFewNA
)
[character]: Gets the name(s) of the variable (the value of the slot varNames
)
[vecteur(numeric)]: Gets the times (the value of the slot time
)
[array(numeric)]: Gets all the joint trajectories (the value of the slot traj
)
[vector3(numeric)]: Gets the dimension of traj
.
[numeric]: Gets the first dimension of
traj
(ie the number of individual include in the analysis).
[numeric]: Gets the second dimension of
traj
(ie the number of time measurement).
[numeric]: Gets the third dimension of
traj
(ie the number of variables).
[vecteur(numeric)]: Gets maxNA.
[matrix(numeric)]: Gets the matrix of the scaling parameters.
scale
scale the trajectories. Usefull to normalize variable trajectories measured with different units.
restoreRealData
restore original data that have been modified after a scaling operation.
% \item{\code{\link{generateArtificialLongData3d}} (or % \code{\link{gald3d}})}{Generate a artifial dataset of some joint % variable-trajectory.}
longDataFrom3d
Create a
LongData
by extracting a single variable trajectory
form a dataset of joint variable-trajectories.
plotTrajMeans
plot all the variable of the LongData3d
, optionnaly according to a Partition
.
plotTrajMeans3d
plot two variables of the LongData3d
in
a 3 dimensions graph, optionnaly according to a Partition
.
plot3dPdf
create 'Triangle objects' representing in
3D the cluster's center according to a
Partition
. 'Triangle object' can latter be
include in a LaTeX file to get a dynamique (rotationg) pdf
figure.
imputation
Impute the missing values of the trajectories.
qualityCriterion
Compute some quality criterion that
can be use to compare the quality of differents Partition
.
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
Overview: longitudinalData-package
Methods: LongData
, longData3d
, imputation
, qualityCriterion
Plot: plotTrajMeans
,
plotTrajMeans3d
, plot3dPdf
#################
### building joint trajectories
dn <- data.frame(id=1:3,v1=c(11,14,16),t1=c(1,5,7),v2=c(12,10,13),t2=c(2,5,0),t3=c(3,6,8))
(ld <- longData3d(dn,timeInData=list(Vir=c(2,4,NA),Tes=c(3,5,6))))
### Scaling
scale(ld)
(ld)
### Plotting
plotTrajMeans3d(ld)
restoreRealData(ld)
Run the code above in your browser using DataLab