Learn R Programming

lrmest (version 3.0)

checkm: Check the degree of multicollinearity present in the dataset

Description

Degree of multicollinearity present in the dataset can be determined by using two type of indicators, called VIF and Condition Number.

Usage

checkm(formula, data, na.action, ...)

Arguments

formula
in this section interested model should be given. This should be given as a formula.
data
an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
na.action
if the dataset contain NA values, then na.action indicate what should happen to those NA values.
...
currently disregarded.

Value

checkm returns the values of two multicllinearity indicators VIF and Condition Number.

Details

If all the values of VIF > 10 implies that multicollinearity present. If condition number < 10 ; There is not multicollinearity. 30 < condition number < 100 ; There is a multicollinearity. condition number >100 ; Severe multicollinearity.

Examples

Run this code
## Portland cement data set is used.
data(pcd)
checkm(Y~X1+X2+X3+X4,data=pcd)

Run the code above in your browser using DataLab