Last chance! 50% off unlimited learning
Sale ends in
ogaur
can be used to find the Ordinary Generalized Almost Unbiased Ridge Estimated values and corresponding scalar Mean Square Error (MSE) value in the linear model. Further the variation of MSE can be shown graphically.ogaur(formula, k, data = NULL, na.action, ...)
formula
.data
, the variables are taken from environment(formula)
, typically the environment from which the function is called.NA
values, then na.action
indicate what should happen to those NA
values.k
is a single numeric values then ogaur
returns the Ordinary Generalized Almost Unbiased Ridge Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If k
is a vector of set of numeric values then ogaur
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Almost Unbiased Ridge Estimator.y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtained the variation of scalar MSE values graphically. See plot
## Portland cement data set is used.
data(pcd)
k<-0.05
ogaur(Y~X1+X2+X3+X4-1,k,data=pcd)
# Model without the intercept is considered.
## To obtain the variation of MSE of
# Ordinary Generalized Almost Unbiased Ridge Estimator.
data(pcd)
k<-c(0:10/10)
plot(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd),
main=c("Plot of MSE of Ordinary Generalized
Almost Unbiased Ridge Estimator"),type="b",
cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6)
mseval<-data.frame(ogaur(Y~X1+X2+X3+X4-1,k,data=pcd))
smse<-mseval[order(mseval[,2]),]
points(smse[1,],pch=16,cex=0.6)
Run the code above in your browser using DataLab