Last chance! 50% off unlimited learning
Sale ends in
ogsrliu(formula, r, R, dpn, delt, d, data = NULL, na.action, ...)
formula
.R
should be given as either a vector
or a matrix
. See dpn
should be given as either a vector
(only the diagonal elements) or a matrix
. See vector
or a matrix
. See data
, the variables are taken from environment(formula)
, typically the environment from which the function is called.NA
values, then na.action
indicate what should happen to those NA
values.d
is a single numeric values then ogsrliu
returns the Ordinary Generalized Stochastic Restricted Liu Estimated values, standard error values, t statistic values, p value and corresponding scalar MSE value.
If d
is a vector of set of numeric values then ogsrliu
returns all the scalar MSE values and corresponding parameter values of Ordinary Generalized Stochastic Resticted Liu Estimator.y ~ x - 1
or y ~ 0 + x
to remove the intercept.
Use plot
so as to obtain the variation of scalar MSE values graphically. See plot
## Portland cement data set is used.
data(pcd)
d<-0.05
r<-c(2.1930,1.1533,0.75850)
R<-c(1,0,0,0,0,1,0,0,0,0,1,0)
dpn<-c(0.0439,0.0029,0.0325)
delt<-c(0,0,0)
ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd)
# Model without the intercept is considered.
## To obtain the variation of MSE of Ordinary Generalized Stochastic
# Restricted Liu Estimator.
data(pcd)
d<-c(0:10/10)
r<-c(2.1930,1.1533,0.75850)
R<-c(1,0,0,0,0,1,0,0,0,0,1,0)
dpn<-c(0.0439,0.0029,0.0325)
delt<-c(0,0,0)
plot(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd),
main=c("Plot of MSE of Ordinary Generalized Stochastic Restricted Liu
Estimator"),type="b",cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3,cex=0.6)
mseval<-data.frame(ogsrliu(Y~X1+X2+X3+X4-1,r,R,dpn,delt,d,data=pcd))
smse<-mseval[order(mseval[,2]),]
points(smse[1,],pch=16,cex=0.6)
Run the code above in your browser using DataLab