Learn R Programming

ltsa (version 1.4.6.1)

Linear Time Series Analysis

Description

Methods of developing linear time series modelling. Methods are given for loglikelihood computation, forecasting and simulation.

Copy Link

Version

Install

install.packages('ltsa')

Monthly Downloads

1,664

Version

1.4.6.1

License

GPL (>= 2)

Maintainer

Last Published

September 18th, 2024

Functions in ltsa (1.4.6.1)

innovationVariance

Nonparametric estimate of the innovation variance
exactLoglikelihood

Exact log-likelihood and MLE for variance
tacvfARMA

theoretical autocovariance function (acvf) of ARMA
SimGLP

Simulate GLP given innovations
DLLoglikelihood

Durbin-Levinsion Loglikelihood
DLResiduals

Prediction residuals
DLAcfToAR

Autocorrelations to AR parameters
PredictionVariance

Prediction variance
DHSimulate

Simulate General Linear Process
DLSimulate

Simulate linear time series
ToeplitzInverseUpdate

Inverse of Toeplitz matrix of order n+1 given inverse of order n
TrenchLoglikelihood

Loglikelihood function of stationary time series using Trench algorithm
TrenchInverse

compute the matrix inverse of a positive-definite Toepliz matrix
is.toeplitz

test if argument is a symmetric Toeplitz matrix
ltsa-package

Linear Time Series Analysis
TrenchMean

Exact MLE for mean given the autocorrelation function
TrenchForecast

Minimum Mean Square Forecast